metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C24⋊6D6, C3⋊2C2≀C22, (C2×C12)⋊2D4, C22⋊C4⋊3D6, (C22×C6)⋊3D4, C22≀C2⋊2S3, D4⋊6D6⋊3C2, (C2×Dic3)⋊2D4, (C2×D4).33D6, (C22×S3)⋊2D4, C24⋊4S3⋊1C2, C6.43C22≀C2, C23⋊1(C3⋊D4), (C23×C6)⋊7C22, C22.33(S3×D4), (C6×D4).49C22, C23.6D6⋊5C2, C23.7D6⋊5C2, C2.11(C23⋊2D6), C6.D4⋊4C22, C23.84(C22×S3), (C22×C6).113C23, (C2×C4)⋊1(C3⋊D4), (C2×C6).30(C2×D4), (C3×C22≀C2)⋊1C2, (C2×C3⋊D4).5C22, C22.29(C2×C3⋊D4), (C3×C22⋊C4)⋊34C22, SmallGroup(192,591)
Series: Derived ►Chief ►Lower central ►Upper central
C1 — C3 — C6 — C2×C6 — C22×C6 — C2×C3⋊D4 — D4⋊6D6 — C24⋊6D6 |
Generators and relations for C24⋊6D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=f2=1, ab=ba, eae-1=ac=ca, ad=da, faf=abcd, bc=cb, ebe-1=fbf=bd=db, fcf=cd=dc, ce=ec, de=ed, df=fd, fef=e-1 >
Subgroups: 688 in 198 conjugacy classes, 39 normal (23 characteristic)
C1, C2, C2, C3, C4, C22, C22, C22, S3, C6, C6, C2×C4, C2×C4, D4, Q8, C23, C23, Dic3, C12, D6, C2×C6, C2×C6, C2×C6, C22⋊C4, C22⋊C4, C2×D4, C2×D4, C4○D4, C24, Dic6, C4×S3, D12, C2×Dic3, C2×Dic3, C3⋊D4, C2×C12, C2×C12, C3×D4, C22×S3, C22×S3, C22×C6, C22×C6, C23⋊C4, C22≀C2, C22≀C2, 2+ 1+4, C6.D4, C6.D4, C3×C22⋊C4, C3×C22⋊C4, C4○D12, S3×D4, D4⋊2S3, C2×C3⋊D4, C2×C3⋊D4, C6×D4, C6×D4, C23×C6, C2≀C22, C23.6D6, C23.7D6, C24⋊4S3, C3×C22≀C2, D4⋊6D6, C24⋊6D6
Quotients: C1, C2, C22, S3, D4, C23, D6, C2×D4, C3⋊D4, C22×S3, C22≀C2, S3×D4, C2×C3⋊D4, C2≀C22, C23⋊2D6, C24⋊6D6
Character table of C24⋊6D6
class | 1 | 2A | 2B | 2C | 2D | 2E | 2F | 2G | 2H | 2I | 3 | 4A | 4B | 4C | 4D | 4E | 4F | 6A | 6B | 6C | 6D | 6E | 6F | 6G | 6H | 6I | 6J | 12A | 12B | 12C | |
size | 1 | 1 | 2 | 2 | 2 | 4 | 4 | 4 | 12 | 12 | 2 | 4 | 8 | 12 | 12 | 24 | 24 | 2 | 2 | 2 | 4 | 4 | 4 | 4 | 4 | 4 | 8 | 8 | 8 | 8 | |
ρ1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | trivial |
ρ2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | -1 | 1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ3 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ4 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ5 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | -1 | 1 | -1 | 1 | linear of order 2 |
ρ6 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | -1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | -1 | 1 | -1 | linear of order 2 |
ρ7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | linear of order 2 |
ρ8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | 1 | 1 | -1 | -1 | 1 | -1 | -1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | linear of order 2 |
ρ9 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ10 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | -2 | 0 | 2 | 0 | orthogonal lifted from D4 |
ρ11 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | 2 | 0 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ12 | 2 | 2 | -2 | 2 | -2 | 0 | 0 | 0 | 0 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 2 | -2 | -2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ13 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | -1 | 2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | -1 | 1 | -1 | 1 | orthogonal lifted from D6 |
ρ14 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | -2 | 0 | 0 | -1 | -2 | -2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | 1 | 1 | 1 | 1 | orthogonal lifted from D6 |
ρ15 | 2 | 2 | 2 | 2 | 2 | -2 | -2 | -2 | 0 | 0 | -1 | -2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | 1 | 1 | -1 | 1 | 1 | 1 | -1 | 1 | -1 | orthogonal lifted from D6 |
ρ16 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 0 | 0 | -1 | 2 | 2 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | -1 | orthogonal lifted from S3 |
ρ17 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 0 | 0 | 2 | 2 | 2 | -2 | 0 | 0 | -2 | 0 | 0 | 2 | 0 | -2 | 0 | orthogonal lifted from D4 |
ρ18 | 2 | 2 | -2 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 2 | 0 | 0 | 0 | 2 | 0 | 0 | 2 | -2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from D4 |
ρ19 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | 1 | -√-3 | -1 | √-3 | complex lifted from C3⋊D4 |
ρ20 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | -2 | 0 | 0 | -1 | 2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | 1 | √-3 | -1 | -√-3 | complex lifted from C3⋊D4 |
ρ21 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | -√-3 | √-3 | 1 | -√-3 | √-3 | -1 | √-3 | 1 | -√-3 | complex lifted from C3⋊D4 |
ρ22 | 2 | 2 | 2 | -2 | -2 | 0 | 0 | 2 | 0 | 0 | -1 | -2 | 0 | 0 | 0 | 0 | 0 | -1 | -1 | -1 | 1 | √-3 | -√-3 | 1 | √-3 | -√-3 | -1 | -√-3 | 1 | √-3 | complex lifted from C3⋊D4 |
ρ23 | 4 | 4 | -4 | -4 | 4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | 2 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ24 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | -2 | -2 | 0 | 2 | 2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ25 | 4 | 4 | -4 | 4 | -4 | 0 | 0 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | -2 | 2 | 2 | -2 | 0 | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | orthogonal lifted from S3×D4 |
ρ26 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | 4 | 0 | 0 | 0 | 0 | 0 | 0 | -4 | 0 | 0 | 0 | 2 | 2 | 0 | -2 | -2 | 0 | 0 | 0 | 0 | orthogonal lifted from C2≀C22 |
ρ27 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | -1-√-3 | -1+√-3 | 0 | 1+√-3 | 1-√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ28 | 4 | -4 | 0 | 0 | 0 | -2 | 2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | -1+√-3 | -1-√-3 | 0 | 1-√-3 | 1+√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ29 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | -2√-3 | 2√-3 | 0 | 1+√-3 | 1-√-3 | 0 | -1-√-3 | -1+√-3 | 0 | 0 | 0 | 0 | complex faithful |
ρ30 | 4 | -4 | 0 | 0 | 0 | 2 | -2 | 0 | 0 | 0 | -2 | 0 | 0 | 0 | 0 | 0 | 0 | 2 | 2√-3 | -2√-3 | 0 | 1-√-3 | 1+√-3 | 0 | -1+√-3 | -1-√-3 | 0 | 0 | 0 | 0 | complex faithful |
(8 21)(10 23)(12 19)
(2 13)(4 15)(6 17)(8 21)(10 23)(12 19)
(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)
(1 18)(2 13)(3 14)(4 15)(5 16)(6 17)(7 20)(8 21)(9 22)(10 23)(11 24)(12 19)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 19)(2 24)(3 23)(4 22)(5 21)(6 20)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)
G:=sub<Sym(24)| (8,21)(10,23)(12,19), (2,13)(4,15)(6,17)(8,21)(10,23)(12,19), (7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,19)(2,24)(3,23)(4,22)(5,21)(6,20)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)>;
G:=Group( (8,21)(10,23)(12,19), (2,13)(4,15)(6,17)(8,21)(10,23)(12,19), (7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,18)(2,13)(3,14)(4,15)(5,16)(6,17)(7,20)(8,21)(9,22)(10,23)(11,24)(12,19), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,19)(2,24)(3,23)(4,22)(5,21)(6,20)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18) );
G=PermutationGroup([[(8,21),(10,23),(12,19)], [(2,13),(4,15),(6,17),(8,21),(10,23),(12,19)], [(7,20),(8,21),(9,22),(10,23),(11,24),(12,19)], [(1,18),(2,13),(3,14),(4,15),(5,16),(6,17),(7,20),(8,21),(9,22),(10,23),(11,24),(12,19)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,19),(2,24),(3,23),(4,22),(5,21),(6,20),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18)]])
G:=TransitiveGroup(24,287);
(7 15)(8 13)(9 17)(10 16)(11 14)(12 18)
(1 24)(2 22)(3 20)(4 21)(5 19)(6 23)(7 15)(8 13)(9 17)(10 16)(11 14)(12 18)
(7 12)(8 10)(9 11)(13 16)(14 17)(15 18)
(1 4)(2 5)(3 6)(7 12)(8 10)(9 11)(13 16)(14 17)(15 18)(19 22)(20 23)(21 24)
(1 2 3)(4 5 6)(7 8 9)(10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 7)(2 9)(3 8)(4 12)(5 11)(6 10)(13 23)(14 22)(15 21)(16 20)(17 19)(18 24)
G:=sub<Sym(24)| (7,15)(8,13)(9,17)(10,16)(11,14)(12,18), (1,24)(2,22)(3,20)(4,21)(5,19)(6,23)(7,15)(8,13)(9,17)(10,16)(11,14)(12,18), (7,12)(8,10)(9,11)(13,16)(14,17)(15,18), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,7)(2,9)(3,8)(4,12)(5,11)(6,10)(13,23)(14,22)(15,21)(16,20)(17,19)(18,24)>;
G:=Group( (7,15)(8,13)(9,17)(10,16)(11,14)(12,18), (1,24)(2,22)(3,20)(4,21)(5,19)(6,23)(7,15)(8,13)(9,17)(10,16)(11,14)(12,18), (7,12)(8,10)(9,11)(13,16)(14,17)(15,18), (1,4)(2,5)(3,6)(7,12)(8,10)(9,11)(13,16)(14,17)(15,18)(19,22)(20,23)(21,24), (1,2,3)(4,5,6)(7,8,9)(10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,7)(2,9)(3,8)(4,12)(5,11)(6,10)(13,23)(14,22)(15,21)(16,20)(17,19)(18,24) );
G=PermutationGroup([[(7,15),(8,13),(9,17),(10,16),(11,14),(12,18)], [(1,24),(2,22),(3,20),(4,21),(5,19),(6,23),(7,15),(8,13),(9,17),(10,16),(11,14),(12,18)], [(7,12),(8,10),(9,11),(13,16),(14,17),(15,18)], [(1,4),(2,5),(3,6),(7,12),(8,10),(9,11),(13,16),(14,17),(15,18),(19,22),(20,23),(21,24)], [(1,2,3),(4,5,6),(7,8,9),(10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,7),(2,9),(3,8),(4,12),(5,11),(6,10),(13,23),(14,22),(15,21),(16,20),(17,19),(18,24)]])
G:=TransitiveGroup(24,357);
(1 19)(2 16)(3 21)(4 18)(5 23)(6 14)(7 15)(8 20)(9 17)(10 22)(11 13)(12 24)
(1 15)(2 8)(3 17)(4 10)(5 13)(6 12)(7 19)(9 21)(11 23)(14 24)(16 20)(18 22)
(1 7)(2 8)(3 9)(4 10)(5 11)(6 12)(13 23)(14 24)(15 19)(16 20)(17 21)(18 22)
(1 19)(2 20)(3 21)(4 22)(5 23)(6 24)(7 15)(8 16)(9 17)(10 18)(11 13)(12 14)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)
(1 3)(4 6)(7 17)(8 16)(9 15)(10 14)(11 13)(12 18)(19 21)(22 24)
G:=sub<Sym(24)| (1,19)(2,16)(3,21)(4,18)(5,23)(6,14)(7,15)(8,20)(9,17)(10,22)(11,13)(12,24), (1,15)(2,8)(3,17)(4,10)(5,13)(6,12)(7,19)(9,21)(11,23)(14,24)(16,20)(18,22), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3)(4,6)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)(19,21)(22,24)>;
G:=Group( (1,19)(2,16)(3,21)(4,18)(5,23)(6,14)(7,15)(8,20)(9,17)(10,22)(11,13)(12,24), (1,15)(2,8)(3,17)(4,10)(5,13)(6,12)(7,19)(9,21)(11,23)(14,24)(16,20)(18,22), (1,7)(2,8)(3,9)(4,10)(5,11)(6,12)(13,23)(14,24)(15,19)(16,20)(17,21)(18,22), (1,19)(2,20)(3,21)(4,22)(5,23)(6,24)(7,15)(8,16)(9,17)(10,18)(11,13)(12,14), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24), (1,3)(4,6)(7,17)(8,16)(9,15)(10,14)(11,13)(12,18)(19,21)(22,24) );
G=PermutationGroup([[(1,19),(2,16),(3,21),(4,18),(5,23),(6,14),(7,15),(8,20),(9,17),(10,22),(11,13),(12,24)], [(1,15),(2,8),(3,17),(4,10),(5,13),(6,12),(7,19),(9,21),(11,23),(14,24),(16,20),(18,22)], [(1,7),(2,8),(3,9),(4,10),(5,11),(6,12),(13,23),(14,24),(15,19),(16,20),(17,21),(18,22)], [(1,19),(2,20),(3,21),(4,22),(5,23),(6,24),(7,15),(8,16),(9,17),(10,18),(11,13),(12,14)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24)], [(1,3),(4,6),(7,17),(8,16),(9,15),(10,14),(11,13),(12,18),(19,21),(22,24)]])
G:=TransitiveGroup(24,364);
Matrix representation of C24⋊6D6 ►in GL4(𝔽7) generated by
1 | 0 | 4 | 0 |
0 | 1 | 5 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 1 |
2 | 6 | 0 | 4 |
2 | 6 | 4 | 1 |
0 | 0 | 6 | 0 |
5 | 2 | 1 | 0 |
0 | 6 | 3 | 2 |
6 | 0 | 4 | 2 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 1 |
6 | 0 | 0 | 0 |
0 | 6 | 0 | 0 |
0 | 0 | 6 | 0 |
0 | 0 | 0 | 6 |
4 | 0 | 6 | 6 |
4 | 1 | 5 | 5 |
6 | 6 | 6 | 2 |
0 | 0 | 0 | 3 |
6 | 2 | 5 | 1 |
1 | 1 | 2 | 1 |
4 | 3 | 5 | 5 |
6 | 6 | 4 | 2 |
G:=sub<GL(4,GF(7))| [1,0,0,0,0,1,0,0,4,5,6,0,0,0,0,1],[2,2,0,5,6,6,0,2,0,4,6,1,4,1,0,0],[0,6,0,0,6,0,0,0,3,4,6,0,2,2,0,1],[6,0,0,0,0,6,0,0,0,0,6,0,0,0,0,6],[4,4,6,0,0,1,6,0,6,5,6,0,6,5,2,3],[6,1,4,6,2,1,3,6,5,2,5,4,1,1,5,2] >;
C24⋊6D6 in GAP, Magma, Sage, TeX
C_2^4\rtimes_6D_6
% in TeX
G:=Group("C2^4:6D6");
// GroupNames label
G:=SmallGroup(192,591);
// by ID
G=gap.SmallGroup(192,591);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,254,219,570,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=f^2=1,a*b=b*a,e*a*e^-1=a*c=c*a,a*d=d*a,f*a*f=a*b*c*d,b*c=c*b,e*b*e^-1=f*b*f=b*d=d*b,f*c*f=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f=e^-1>;
// generators/relations
Export